Oxidative Isomerisation as a Probe of Mixed Valency in Cyanide-bridged Dimanganese Carbonyl Phosphine Complexes

Gabino A. Carriedo,^a Neil G. Connelly,^b M. Carmen Crespo,^a Ian C. Quarmby,^b and Victor Riera^a

^a Department of Organometallic Chemistry, University of Oviedo, Oviedo 33071, Spain

Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS, U.K.

The isomeric *trans,trans*- and *cis,trans*- $[Mn_2]^{2+}$ -containing monocations (**3**⁺) and (**4**⁺) are oxidised to the trapped valence $[Mn_2]^{3+}$ dications (**3**²⁺) and (**4**²⁺); the oxidative isomerisation of (**5**⁺) to (**3**²⁺) results from intramolecular electron transfer within (**5**²⁺)

Cyclic voltammetry has proved an invaluable tool in the study of the oxidative isomerisation of metal carbonyl derivatives.¹ For example, *cis*, *cis*-[MnL(CO)₂(P(OPh)₃)(dppm)]^{z+} [1; z =0, L = CN; z = 1, L = CNMe or NCMe; dppm = bis(diphenylphosphino)methane] shows^{2,3} an irreversible oxidation wave with a coupled, reversible product wave due to the formation of *trans*-[MnL(CO)₂{P(OPh)₃}(dppm)]^{z+} (2; z =0, L = CN; z = 1, L = CNMe or NCMe). We now show how cyclic voltammetric studies of the oxidative isomerisation of

the binuclear cyanide-bridged cations (3^+) — $(6^+)^+$ provide an insight into the mixed-valence properties of the $[Mn_2]^{3+}$ -containing dications (3^{2+}) — (6^{2+}) .

The cyclic voltammograms of (3^+) , (4^+) , and (5^+) are shown in Figure 1; the *trans,trans*-isomer (3^+) shows two

^{\dagger} Complexes (3⁺) to (6⁺) have been characterised by elemental analysis, and their structures defined by i.r. and ³¹P n.m.r. spectroscopy.

 (5^+)

(6+)

^a All electrochemical measurements were carried out in CH₂Cl₂, 0.1 mol dm⁻³ in [NBuⁿ₄][PF₆], as supporting electrolyte. Voltammetry employed a platinum bead electrode, controlled potential electrolysis a platinum basket. All potentials are quoted *vs*. the saturated calomel electrode; E^0 for the oxidation of ferrocene, added as an internal standard, was 0.47 V under the experimental conditions used. The one-electron oxidation processes are reversible unless stated otherwise. ^b Irreversible oxidation; value given is the oxidation peak potential, $E_p(ox)$, at a scan rate of 200 mV s⁻¹.

0.85

1.17

1.42^ь 1.58^ь

reversible one-electron oxidation waves (see Table 1), but (4^+) and (5^+) each show one reversible oxidation wave and a second, irreversible oxidation wave at a more positive potential. For both (4^+) and (5^+) the second wave is coupled to two reversible product waves with exactly the potentials observed for the oxidations of (3^+) .

These results can be simply rationalised if it is assumed, (i) that oxidation of the binuclear species occurs sequentially at two non-interacting manganese(1) centres and, (ii) that, by comparison with the behaviour of the mononuclear complexes (1) and (2), oxidation at a *trans*-site is reversible but at a *cis*-site is irreversible and accompanied by isomerisation. Thus, for example, (3^+) is oxidised to (3^{2+}) and then to (3^{3+}) with retention of geometry throughout, whereas (4^+) is oxidised first at the *trans*-site to give the *cis*, *trans*-dication (4^{2+}) , and then at the *cis*-site to give (4^{3+}) which rapidly isomerises to (3^{3+}) .[‡]

The chemical and electrochemical (controlled potential electrolysis) oxidation of (3^+) — (5^+) , together with i.r. and e.s.r. spectroscopic studies on the products, provides strong evidence for the localised oxidation implied by cyclic voltammetry. For all of the complexes, reaction with excess [NO][PF₆] affords the *trans,trans*-trication $(3^{3+}; v_{(CO)} 2009 \text{ cm}^{-1})$. However, the mixed-valence dications, containing

Figure 1. The single scan cyclic voltammograms of (a) (3^+) , (b) (4^+) , and (c) (5^+) , in CH₂Cl₂ at a platinum bead electrode.

 $[Mn_2]^{3+}$ cores, can be prepared by using stoicheiometric (1:1) quantities of $[NO][PF_6]$ or by electrolysis at a potential *ca*. 0.2 V more positive than that of the first oxidation wave.

The addition of [NO][PF₆] to $[3^+; v_{(CO)} 1933 \text{ cm}^{-1}]$ in CH₂Cl₂ gave a dark brown-purple solution from which the purple-black $[PF_6]^-$ salt of (3^{2+}) was isolated in excellent yield (90%). The dication shows two carbonyl bands in the i.r. spectrum [$v_{(CO)}$ 2000(s) and 1943(s) cm⁻¹], one similar in frequency to that of (3^{3+}) and the other only 10 cm^{-1} higher in frequency than that of (3^+) . The implication of localised oxidation at one manganese site, and therefore of trapped valency for (3^{2+}) , is strongly supported by the frozen solution e.s.r. spectrum $(-120 \degree C; CH_2Cl_2-tetrahydrofuran, 1:2)$ which is similar to those of the mononuclear Mn^{II} derivatives $[MnL(CO)_{2}{P(OPh)_{3}}(dppm)]^{z+}$ (z = 1, L = CN; z = 2, L = CNMe). The cis, trans dication (4^{2+}) is similarly isolable and shows i.r. carbonyl bands [2000(ms), 1972(s), and 1934(m) cm⁻¹] again consistent with localised oxidation at the transsite [c.f. (4^+) : $v_{(CO)}$ 1971(m), 1928(s), and 1916(m, sh) cm⁻¹].

The oxidative behaviour of (5^+) is different from that of (3^+) and (4^+) . On electrolytic oxidation at 0.90 V (20 min, n = 0.9) a dark brown-purple solution is formed, but cyclic voltammetry and voltammetry at a rotating platinum electrode reveal the quantitative formation of only the *trans, trans*-dication (3^{2+}) [*i.e.* the product solution shows reversible reduction (0.61 V) and oxidation (1.22 V) waves].

Monitoring the [NO][PF₆] oxidation of (5^+) shows that (3^{2+}) is formed after the initial generation of the *trans,cis*-dication [(5^{2+}) : $v_{(CO)}$ 1997(s), 1966(ms), and 1921(m) cm⁻¹

[‡] The cyclic voltammogram of the *cis,cis*-isomer (6⁺) shows two irreversible oxidation waves (see Table 1). Isomerisation occurs after the first oxidation step to give (4²⁺); the second irreversible peak for (6⁺) occurs at the potential for the irreversible oxidation of (4²⁺) to (4³⁺).

c.f. (5⁺): $v_{(CO)}$ 1968(m), 1931(s), and 1901(m) cm⁻¹] but without the formation of any trication [*i.e.* (3³⁺)]. It appears, therefore, that *intra*molecular electron-transfer can occur in (5²⁺) so that *cis*- to *trans*-isomerisation is induced in the [Mn₂]³⁺ complex; the detection of (5²⁺) as an intermediate in the formation of (3²⁺) rules out fundamentally different oxidative behaviour for (5⁺) (*i.e.* the electron is not removed from an orbital delocalised over the two metal centres).§

A comparison of ΔE [the difference between E^0 for the first, reversible, oxidation and $E_p(\text{ox})$ for the second, irreversible oxidation] for (4+) and (5+), 0.9 and 0.6 V, respectively, suggests an alternative reason for the increased stability of (4²⁺) over (5²⁺). For (5²⁺), ΔE is small enough for partial oxidation to occur of the *cis*-Mn^I site by the *trans*-Mn^{II} centre; isomerisation then gives (3²⁺) irreversibly, thus driving the intramolecular electron-transfer to completion. A similar

process for (4^{2+}) is less favourable as ΔE is greater by *ca*. 0.3 V.

We thank the S.E.R.C. for a research studentship (to I. C. Q.), the British Council and Spanish Ministry of Education and Science for an Acciones Integradas grant, and the Spanish Comision Asesora de Investigacion Científica y Tecnica.

Received, 22nd July, 1987; Com. 1065

References

- See, for example, R. N. Bagchi, A. M. Bond, G. Brain, R. Colton, T. L. E. Henderson, and J. R. Kevekordes, *Organometallics*, 1984, **3**, 4; A. M. Bond, S. W. Carr, and R. Colton, *ibid.*, 1984, **3**, 541; A. M. Bond, S. W. Carr, and R. Colton, *Inorg. Chem.*, 1984, **23**, 2343; N. G. Connelly and W. E. Geiger, *Adv. Organomet. Chem.*, 1984, **23**, 1, and references therein.
- 2 N. G. Connelly, S. J. Raven, G. A. Carriedo, and V. Riera, J. Chem. Soc., Chem. Commun., 1986, 992.
- 3 G. A. Carriedo, V. Riera, N. G. Connelly, and S. J. Raven, J. Chem. Soc., Dalton Trans., in the press.

[§] An *inter*molecular electron-transfer reaction involving two dications (5^{2+}) cannot be ruled out; attempts to detect an intervalence band for (5^{2+}) have not yet been made.